pneumatic telescopic mast|lighting mast|military mast

NEWS

High-Mast LED Solutions a Must for Airport Apron Lighting

Time:2018-05-30 View:

 In the cutthroat business of commercial air transport, airport operators are constantly looking for solutions that not only cut running costs, but also enhance the passenger experience. LED-based, energy efficient lighting clearly fits the bill. Providing an additional incentive is the LEED (Leadership in Energy and Environmental Design) scheme, whereby an airport can achieve Gold Certification for energy efficient lighting, giving it a perceived competitive edge. Consequently, the market for LEDs in commercial airport lighting is skyrocketing.

Airport lighting can be largely subdivided into three main areas: high-mast outdoor lighting for the large area lighting of aprons, roadways and car parks; ground lighting for runways, taxi ways and approach paths; and indoor terminal lighting.

This article will focus on high-mast lighting, which has similarities to the requirements for street and roadway lighting. The difference is that the masts are often much taller, 30 meters or more, compared to 10 to 20 meters for streetlights. High-mast outdoor area lighting at airports, primarily on aircraft parking aprons and car parking areas, is rapidly being converted to LED light sources.

The primary motivator is cost savings resulting from low-energy operation and reduced maintenance, claimed to be 50% or more. However, other recognized benefits include improved safety due to a higher color rendering index for better nighttime visibility, and enhanced light quality through features such as dimmability, adjustable light intensity, selectable color temperature, instant-on, flicker-free operation, and overall controllability.

This article will consider two LED families that are widely used in high-mast lighting applications: Cree’s XLamp XT-E range and Philips Lumileds LUXEON®-K range. Design tips will be referenced on how to estimate the type and number of LEDs needed per module for the required light output. Further emphasis will be made on the importance of illuminance simulation to demonstrate and verify the light distribution of the design configuration.

Further guidance on the requirement for thermal management, and heatsinks in particular, will also be included. This point is illustrated with TE Connectivity’s solderless LED holder (217340) and how it is assembled with a suitable thermal interconnect material (TIM). Examples include the Ultrastick thermal compound from Aavid Thermalloy, and the Ohmite and Nuventix heatsinks designed specifically for the LUXEON-K LED arrays.

High mast, high vis

New installations at airports are typically exploiting LEDs for high-mast lighting applications. Meanwhile, many airports and airfields are seeking to upgrade to LED lighting, exploiting existing infrastructure. Birmingham airport in the UK is seeking a contractor to upgrade its high-mast lighting to LEDs. Munich airport, meanwhile, one of Europe’s largest international hubs, has recently announced it is replacing high-pressure sodium (HPS) lamps with LED-based solutions both airside on aircraft aprons and on roadways and parking areas. See Figure 1 above.

With the twin aims of saving on energy costs and ensuring CO2 emissions do not exceed 2005 levels, Munich airport expects to halve its annual energy consumption and reduce CO2 emissions by 70 tons, just on completion of phase one. Further replacement of apron floodlights and exterior lights is anticipated to save more than 5000 tons of CO2 annually. Each HPS high-mast lamp will be replaced with a module containing 288 Cree XLamp XT-E LEDs. However, it is only recently that sufficiently high-brightness, high-efficacy LEDs have been available at an appropriate price point to meet the demands of high-mast lighting.

Clearly, the energy saving potential in these high-power, high-mast type applications is enormous. Fixtures that typically use 1000 W HID, metal halide or HPS lighting fixtures can easily be replaced by 204, 320 or 400 W LED fixtures. Light output can be anywhere from 16,000 to as much as 40,000 lm flux.

With LEDs, a CRI of 70 to 95 is easily achieved, which is important for better nighttime visibility, and is therefore regarded as a safety issue. Colors are rendered more naturally, and they avoid the yellow hues common with HPS light sources (CRI around 25), which can be a real problem in poor weather conditions.

The ability to select color temperature is important too, either as a constant or programmable feature. With a range from 3000K to 6000K, light quality can be specified to match the precise nature of the target area to be illuminated. With LEDs, light intensity can be dimmed from 100 to 75% or lower, to generate even greater energy savings. Lifetime is typically guaranteed over 50,000 hours, with a warranty of 5 years, resulting in the next significant cost saving factor: reduced maintenance.

Designing high-mast lights more than 30 meters above the ground has some similarities to streetlights, but some differences too. High-mast luminaire designers typically perform illuminance and luminance simulation calculations to demonstrate that the proposed installation provides uniform flood lighting across the required area. In most retrofit applications, the design is constrained to using existing high-mast poles.

It is just as important to verify that the design meets lighting requirements and eliminates halos and dark zones over the entire area to be illuminated to avoid light pollution. Light spilling into areas where it is not needed is not only wasteful, but may often be undesirable. Examples of nuisance lighting include overspill into nearby residential areas and hotel complexes, blinding drivers on nighttime roads, and creating a ‘sky glow’, especially in rural areas, from unshielded uplighting.

Design approach

Leading LED vendor, xuedian, has produced a number of application notes, design guides and reference designs aimed at helping lighting designers and specifiers ensure they create the most appropriate luminaire for the application. A good start is the LED Luminaire Design Guide,a generic document providing general guidelines organized as a six-point design process.

In addition, Cree has published the XLamp XT-E Streetlight Reference Design.2 The XT-E LEDs are not only widely used for streetlights, but also for other high-mast lighting applications such as airport apron lighting, making much of the content of this document particularly useful. It details issues such as the ideal intensity distribution for overhead lighting, depending on the area to be lit and the IES-MLO defined lighting zones. It summarizes the systems for evaluation of outdoor lighting installations, using the maximum lumen levels for backlight, uplight and glare – the so-called BUG values.

Further consideration is given to thermal requirements , secondary optics to meet beam pattern requirements, and the IP65-rated drive electronics. Usefully, Cree has an online Product Characterization Tool , which can be applied to determine the drive current for the design, given the target optical efficiency and driver efficiency. It will also calculate the number of LEDs required to achieve the light output specified in the design. Design constraints, such as power, efficiency, size (minimizing the number of LEDs per luminaire), and even cost, can be taken into consideration.

1.jpg2.jpg3.jpg